Clear cutting and burning affect nitrogen supply, phosphorus fractions and seedling growth in soils from a Wyoming lodgepole pine forest
نویسندگان
چکیده
Timber harvesting, with and without prescribed slash ®re, and wild ®re are common disturbances in pine forests of western North America. These disturbances can alter soil nitrogen (N) pools and N supply to colonizing vegetation, but their in ̄uence remains poorly understood for many forests. We investigated the effects of clear cut harvesting and ®re on KCl extractable N pools, net N mineralization rates, phosphorus (P) fractions, seedling N uptake, and seedling growth in mineral soils sampled from a lodgepole pine forest in southern Wyoming. At a site where wild ®re burned through a harvested stand of lodgepole pine and the adjacent intact forest, we analyzed mineral soils from the following four treatments: unburned clear cut, burnt clear cut, unburned forest, and burnt forest. Soils from unburned and burnt clear cut treatments had higher concentrations of KCl extractable N and higher net N mineralization rates, and produced larger pine seedlings in bioassays than soils from unburned and burnt intact forest treatments. Further, while seedlings grown in soils from the unburned and burnt forest treatments responded strongly to N fertilization, seedlings grown in clear-cut soils did not respond to fertilization. Taken together, these results suggest that harvesting had increased soil N supply. In comparing clear cut treatments, soils from the unburned clear cut had smaller extractable N and P pools, and lower net N mineralization rates, but produced larger pine seedlings than soils from the burnt clear cut. # 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Long-term efficacy of diameter-limit cutting to reduce mountain pine beetle-caused tree mortality in a lodgepole pine forest
Mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most significant mortality agent in pine forests of western North America. Silvicultural treatments that reduce the number of susceptible host trees, alter age and size class distributions, and diversify species composition are considered viable, long-term options for reducing stand susceptibility to mountain pine beetle-caused tree ...
متن کاملBark beetles, fuels and future fire hazard in contrasting conifer forests of Greater Yellowstone
Bark beetles, fuels and future fire hazard in contrasting conifer forests of Greater Yellowstone" (2013). ABSTRACT The extent and severity of bark beetle (Curculionidae: Scolytinae) epidemics and the frequency of large, severe fires have reached unprecedented levels in recent decades, and these trends are expected to continue with ongoing climate change. Insects and fire have tremendous ecologi...
متن کاملBelowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park
Forest development patterns following wildfire are known to influence the physical and chemical attributes of soils at different points in time, and are further thought to influence ectomycorrhizal (ECM) community structure. We used molecular methods to compare belowground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine (established after a ...
متن کاملStand restoration burning in oak–pine forests in the southern Appalachians: effects on aboveground biomass and carbon and nitrogen cycling
Understory prescribed burning is being suggested as a viable management tool for restoring degraded oak–pine forest communities in the southern Appalachians yet information is lacking on how this will affect ecosystem processes. Our objectives in this study were to evaluate the watershed scale effects of understory burning on total aboveground biomass, and the carbon and nitrogen pools in coars...
متن کاملForest structure and regeneration following a mountain pine beetle epidemic in southeastern Wyoming
Rocky Mountain forests are currently experiencing a bark beetle epidemic of unprecedented severity and extent. Forest regeneration following bark beetle outbreaks is driven by the survival and density of understory trees (advance regeneration). The composition and density of the advance regeneration may differ substantially from the pre-outbreak overstory and across environmental gradients. We ...
متن کامل